- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Downing, Timothy_L (1)
-
Gundogdu, Gokhan (1)
-
Li, Jiachun (1)
-
Mauney, Joshua_R (1)
-
Nguyen, Travis (1)
-
Shao, Hanjuan (1)
-
Trinh, Annie (1)
-
Urban, Lauren_A (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Esophageal pathologies such as atresia and benign strictures often require surgical reconstruction with autologous tissues to restore organ continuity. Complications such as donor site morbidity and limited tissue availability have spurred the development of acellular grafts for esophageal tissue replacement. Acellular biomaterials for esophageal repair rely on the activation of intrinsic regenerative mechanisms to mediate de novo tissue formation at implantation sites. Previous research has identified signaling cascades involved in neoepithelial formation in a rat model of onlay esophagoplasty with acellular silk fibroin grafts, including phosphoinositide 3‐kinase (PI3K), and protein kinase B (Akt) signaling. However, it is currently unknown how these mechanisms are governed by DNA methylation (DNAme) during esophageal wound healing processes. Reduced‐representation bisulfite sequencing is performed to characterize temporal DNAme dynamics in host and regenerated tissues up to 1 week postimplantation. Overall, global hypermethylation is observed at postreconstruction timepoints and an inverse correlation between promoter DNAme and the expression levels of differentially expressed proteins during regeneration. Site‐specific hypomethylation targets genes associated with immune activation, while hypermethylation occurs within gene bodies encoding PI3K‐Akt signaling components during the tissue remodeling period. The data provide insight into the epigenetic mechanisms during esophageal regeneration following surgical repair with acellular grafts.more » « less
An official website of the United States government
